Образец для цитирования:
Мами Т. Т., Лобанов В. А., Короткова Н. В. Оценка будущих температур воздуха Центральной Африки по сценариям проектов CMIP5 и CMIP6 // Известия Саратовского университета. Новая серия. Серия: Науки о Земле. 2023. Т. 23, вып. 1. С. 8-20. DOI: https://doi.org/10.18500/1819-7663-2023-23-1-8-20
Оценка будущих температур воздуха Центральной Африки по сценариям проектов CMIP5 и CMIP6
По результатам исторического эксперимента проектов CMIP5 и CMIP6 оценивается эффективность сценарных оценок (RCP/SSP1 2.6, RCP/SSP2 4.5 и RCP/SSP5 8. 5) будущей температуры воздуха для Центральной Африки для глобальных климатических моделей IPSL и BCC. Результаты моделирования этих проектов сравниваются друг с другом и с наблюдениями метеорологических станций в регионе как для исторического экспериментального периода, так и с наблюдениями последних лет для осуществления будущих климатических прогнозов. На основе исторического эксперимента и будущих оценок за последние 16 лет было установлено, что версии моделей проекта CMIP6 не являются более эффективными, чем результаты CMIP5 при сравнении с данными наблюдений. В связи с тем, что различия между данными наблюдений и моделирования имеют систематический характер, результаты сценарных оценок были скорректированы по принципу сходства темпов роста температуры для исторического периода наблюдений и будущего сценарного периода до конца 21 века, который разделен на 3 интервала для оценки средних значений: 2011–2040, 2041–2070 и 2071–2100 гг. Будущие температуры воздуха в Центральной Африке были оценены как для средних значений по территории, так и для температур отдельных метеостанций на основе скорректированных сценарных значений, которые отличались по CMIP5 и CMIP6 не более чем на 0,1°С. Получено, что среднее по территории повышение температуры во все месяцы к концу XXI века достигает 2,0–2,3°С, а по оценкам на отдельных метеостанциях получены пространственные распределения будущих температур, которые показывают наибольший рост на севере региона вблизи Сахеля.
- Salman S. A., Shahid S., Afan H. A., Shiru M. S., AlAnsari N., Yaseen Z. M. Changes in climatic water availability and crop water demand for Iraq region // Sustainability. 2020. Vol. 12. P. 3437. https://doi.org/10.3390/su12083437
- Nashwan M. S., Shahid S. Future precipitation changes in Egypt under the 1.5 and 2.0°C global warming goals using CMIP6 multimodel ensemble // Atmospheric Research. 2022. Vol. 265. Article number 105908. https://doi.org/10.1016/j.atmosres.2021.105908
- Hamed M. M., Nashwan M. S., Shahid S. A novel selection method of CMIP6 GCMs for robust climate projection // International Journal of Climatology. 2022. Vol. 42. P. 4258– 4272. https://doi.org/10.1002/joc.7461
- Salehie O.; Ismail T. B., Hamed M. M., Shahid S., Idlan Muhammad M. K. Projection of Hot and Cold Extremes in the Amu River Basin of Central Asia using GCMs CMIP6 // Stochastic Environmental Research and Risk Assessment. 2022. Vol. 36, iss. 10. P. 1–22. https://doi.org/10.1007/s00477-022-02201-6
- Salehie O., Ismail T. B., Hamed M. M., Shahid S., Idlan Muhammad M. K. Selection of CMIP6 GCM with projection of climate over the Amu Darya River Basin // Theoretical and Applied Climatology. 2022. № 2. P. 1–19. https://doi.org/10.21203/rs.3.rs-1031530/v1
- Hartmann D. L. Chapter 11-Global Climate Models // Global physical climatology. 2nd ed. Boston : Elsevier, 2016. P. 325–360.
- Taylor K. E., Balaji V., Hankin S., Juckes M., Lawrence B., Pascoe S. CMIP5 data reference syntax (DRS) and controlled vocabularies. PCMDI: San Francisco Bay Area, 2011. https://pcmdi.llnl.gov/mips/cmip5/docs/cmip5_data_reference_syntax_v1-01... (дата обращения: 10.05.2022).
- Hamed M. M., Nashwan M. S., Shahid S., Ismail T. B., Wang X. J., Dewan A., Asaduzzaman M. Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia // Atmospheric Research. 2022. Vol. 265. P. 105927. https://doi.org/10.1016/j.atmosres.2021.105927
- Weigel A. P., Knutti R., Liniger M. A., Appenzeller C. Risks of model weighting in multimodel climate projections // Journal of Climate. 2010. Vol. 23. P. 4175–4191. https://doi.org/10.1175/2010JCLI3594.1
- Hamed M. M., Nashwan M. S., Shahid S. Inter-comparison of Historical Simulation and Future Projection of Rainfall and Temperature by CMIP5 and CMIP6 GCMs Over Egypt // International Journal of Climatology. 2022. Vol. 42. P. 4316– 4332. https://doi.org/10.1002/joc.7468
- Song Y. H., Nashwan M. S., Chung E. S., Shahid S. Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea // Atmospheric Research. 2021. Vol. 247. Article number 105261. https://doi.org/10.1016/j.atmosres.2020.105261
- Eyring V., Bony S., Meehl G. A., Senior C. A., Stevens B., Stouffer R. J., Taylor K. E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geoscientific Model Development. 2016. Vol. 9. P. 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- Shiru M. S., Chung E. S., Shahid S., Wang X.-J. Comparison of precipitation projections of CMIP5 and CMIP6 global climate models over Yulin China // Theoretical and Applied Climatology. 2022. Vol. 147. P. 535–548. https://doi.org/10.21203/rs.3.rs-628014/v1
- Song Y. H., Chung E. S., Shahid S. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models // International Journal of Climatology. 2021. Vol. 41. P. 5899–5919. https://doi.org/10.1002/joc.7159
- Ortega G., Arias P. A., Villegas J. C., Marquet P. A., Nobre P. Present-day and future climate over central and South America according to CMIP5/CMIP6 models // International Journal of Climatology. 2021. Vol. 41. P. 6713–6735. https://doi.org/10.1002/joc.7221
- Zamani Y., Hashemi Monfared S. A., Azhdari Moghaddam M., Hamidianpour M. A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: The case of Northeastern Iran // Theoretical and Applied Climatology. 2020. Vol. 142. P. 1613–1623. https://doi.org/10.1007/s00704-020-03406-x
- Chen C.-A., Hsu H.-H., Liang H.-C. Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia // Weather and Climate Extremes 2021. Vol. 31. Article number 100303. https://doi.org/10.1016/j.wace.2021.100303
- Ayugi B., Jiang Z., Zhu H., Ngoma H., Babaousmail H., Karim R., Dike V. Comparison of CMIP6 and CMIP5 models insimulating mean and extreme precipitation over East Africa // International Journal of Climatology. 2021. Vol. 41. P. 6474– 6496. https://doi.org/10.1002/joc.7207
- Bourdeau-Goulet S. C., Hassanzadeh E. Comparisons Between CMIP5 and CMIP6 Models: Simulations of Climate Indices Influencing Food Security, Infrastructure Resilience, and Human Health in Canada // Earth’s Future. 2021. Vol. 9. Article number e2021EF001995. https://doi.org/10.1029/2021EF001995
- Lun Y., Liu L., Cheng L., Li X., Li H., Xu Z. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau // International Journal of Climatology. 2021. Vol. 41. P. 3994– 4018. https://doi.org/10.1002/joc.7055
- Наука и инновации – современные концепции: сборник научных статей по итогам работы Международного научного форума / ответственный редактор Д. Р. Хисматуллин. Москва : Инфинити, 2022. 236 с.
- Лобанов В. А., Кириллина К. С. Современные и будущие изменения климата Республики Саха (Якутия). СанктПетербург : Издательство РГГМУ, 2019. 157 с.