

Фототаблица I

Мандибулярные зубные пластины химер Stoilodon aenigma Nessov et Averianov, 1996b из нижнего мела европейской части России.

Фиг. 1. Экз. СГУ 154/626, правая пластина (L87, K30), Стойленский карьер, Белгородская область; людиновская и полпинская свиты (non in situ), верхний альб – нижний сеноман, меловая система: 1a — вид симфизно-ротовой поверхности; 16 — вид базальной поверхности; 16 — вид с лабиального края. Кол. К.М. Шаповалова, 2001 г.

Фиг. 2. Экз. СГУ 155/72, левая пластина (L99, K35), ЛФР-12, Московская область; зона Riasanites rjasanensis, рязанский региоярус (горизонт), берриасский ярус, нижний мел; 2a — вид ротовой поверхности; 2δ — вид базальной поверхности. Сборы А.В. Ступаченко, 2004 г. Белая линия на $2a-\delta$ показывает форму и простирание пластинок диагонально-пластинчатого плеромина, слагающих лабиальный тритор; точечный пунктир (2a) — восстановленные части пластины;

сокращения: dlp — диагонально-пластинчатый плеромин; lct — лабиальный режущий тритор; spl — симфизная площадка

Фототаблица II

Правая мандибулярная (L98, Km22) пластина *Stoilodon sp.*, экз. УПМ ЕП-1405; местонахождение Городищи, Ульяновский район, Ульяновская область; зона nikitini, средневолжский подъярус, верхняя юра. Сборы В.М. Ефимова, 2005 г.

Фиг. 1a—e — изображение пластины; фиг. 1z—e — морфологическая интерпретация: 1a, 1a — вид симфизно-ротовой поверхности; 16, 1e — вид базальной поверхности; 1e, e — деталь строения клюва, вид ротовой поверхности; 1e — реконструированный лингвальный профиль; косой штриховкой (фиг. 1a) показаны поврежденные поверхности; пунктир (фиг. 1a) — граница окклюзивной и постокклюзивной поверхностей; точечный пунктир (фиг. 1a) — восстановленные части пластины;

сокращения см. на рис. 1, а также: dlp – диагонально-пластинчатый плеромин; tlp – поперечно-пластинчатый плеромин; syt – симфизный тритор; syt' – тело плеромина симфизного тритора(ов); trb – триторный уступ (валик)

УДК 553.24.065

НЕКОТОРЫЕ ЧЕРТЫ ГИДРОТЕРМАЛЬНЫХ ПРЕОБРАЗОВАНИЙ МИНДАЛЕКАМЕННЫХ БАЗАЛЬТОВ ТУРИНСКОЙ СЕРИИ

КУШМУРУНСКОГО ГРАБЕНА (Тургайский прогиб)

Д. А. Шелепов

Саратовский государственный университет E-mail: Shelepov@renet.ru

В статье рассмотрены некоторые особенности гидротермального изменения миндалекаменных базальтов туринской вулканогенно-осадочной серии. Изучены состав и взаимоотношение минеральных компонентов, выполняющих миндалины. Чередование слоистых силикатов и цеолитов свидетельствует об изменении состава и физико-химических характеристик минералообразующего раствора. Основными движущими факторами этого процесса, осуществляющего постоянное взаимодействие растворпорода, являются циклическое образование зон растяжения, внедрение даек и периодически возобновляющаяся трещиноватость, которые характерны для зон рифтогенеза (тафрогенеза). Ключевые слова: гидротермальные изменения, базальты, туринская серия, тафрогенез.

Some Features of Hydrothermal Transition Amygdaloidal Basalts Turin Series Kushmurunskogo Graben (Turgay Trough)

D. A. Shelepov

The article discusses some features of hydrothermal alteration of basaltic amygdaloidal Turin volcanogenic-sedimentary series. The composition and the relationship of mineral components performing tonsil. The alternation of layer silicates and zeolites, indicating a change in

the composition and physico-chemical characteristics of the mineral solution. The main drivers of this process, carrying out a permanent solution-rock interaction are the cyclic formation of zones of tension, the introduction of dikes and periodically renewed fractures, which are characteristic of rift zones (tafrogeneza).

Key words: hydrothermal alteration, basalts, Turin series, tafrogenez.

Петрографические и минералого-термобарогеохимические исследования керна вулканогенноосадочных пород туринской серии на месторождениях бентонитовых глин «Верховое» и «Южное» показали, что гидротермальные изменения пород исследуемой территории проявляются в развитии процессов пропилитизации (аргиллизированных пропилитов), кислотного выщелачивания, гидротермальной аргиллизации и глеевого эпигенеза.

Локализация продуктов гидротермального изменения пород контролируется приуроченностью к определенным частям липаритовых куполов, покровам базальтов или дайкам долеритов, а также положением тектонических нарушений и проницаемостью самих вулканитов. Перечисленные процессы приводят к формированию метасомати-

ческой зональности, которая закономерно меняется по фронту движения гидротермальных растворов.

Поскольку подробному изучению гидротермально и эпигенетически измененных пород посвящена специальная работа А. Д. Коробова [1], то мы не будем подробно останавливаться на характеристике этих образований, а отметим их наиболее интересные особенности, установленные нами в процессе работы.

Наблюдения в шлифах показали, что начальная стадия изменения фиксируется зоной аргиллизированными низкотемпературными пропилитами, приуроченными к центральным частям риолитовых экструзивов, которая выше по разрезу переходит в зону кислотного выщелачивания. Протекание пропилитизации в липаритах и вмещающих их базальтов и долеритов заметно различается.

Аргиллизированные низкотемпературные пропилиты в пределах липаритовых куполов сложены адуляром и кварцем, в них также развиты смектиты, карбонаты, анальцим, клиноптилолит, гейландит, морденит и пирит.

Породы липаритового состава содержат оплавленные фенокристаллы первичных минералов – полевого шпата и биотита, которые замещаются мозаичным кварцем и адуляром. Нередко наблюдается полосчатое чередование агрегатов ксеноморфного кварца, калиевого полевого шпата и гематита. Многие образцы изобилуют мелкими секущими прожилками мощностью 1-2 мм, выполненными цеолитами, кварцем и адуляром. Адуляр замещается цеолитами с сохранением формы первого. Количество цеолитов составляет 10–15% в низах разреза и увеличивается вверх по разрезу до 15-20%, где начинает преобладать монтмориллонит. Монтмориллонит находится в тесной парагенетической ассоциации с низкотемпературным кристаболитом и примесью каолинита. Иногда в породе присутствует шабазит.

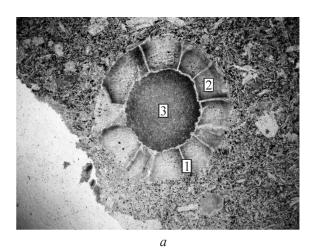
Базальты образуют лавовые покровы, мощность которых может достигать 100 м. В строении отдельных покровов прослеживается закономерное распределение базальтов различной степени раскристаллизации. Обычно подошва и кровля сложены миндалекаменными разностями с пузырчатой текстурой, к центральной же части покровов лавы сменяются полнокристаллическими базальтами, имеющими массивную текстуру. Основные интрузивные тела сложены долеритами и мало чем отличаются от полнокристаллических базальтов центральных частей потоков, как по составу так и петрохмическим особенностям [2]. По форме и условиям залегания они образуют горизонтальные пластовые тела (силлы), согласные с вмещающей их толщей базальтов. Свежие базальты очень прочные и имеют темную окраску. Но на участках, примыкающих к экструзивным куполам липаритов, достигающих до 1,5 км, они сильно раздроблены. В большинстве случаев свежие базальты сильно трещиноваты, брекчированы и изобилуют зеркалами скольжения.

Наиболее свежими оказываются плотные, монолитные слабопроницаемые породы, но даже они несут следы изменения. В частности, это касается тел долеритов, имеющих, как правило, крупнокристалличекую структуру. Плагиоклазы остаются свежими, иногда они серицитизированы, а редкие включения стекла смектитизированы. Темноцветные минералы, в первую очередь оливин и приоксены, с различной интенсивностью замещаются хлоритом, карбонатом, иногда кварцем. Базис фрагментарно хлоритизирован и смектитизирован, кабонатизирован, иногда замещен иддингситом и гематитом. Везикулы и миндалины выполнены частично смектитизированным хлоритом, который часто ассоциирует с карбонатами (кальцитом), кварцем. Основная же масса плагиоклазов не подвергается изменению. Очень часто порода рассечена карбонатными прожилками.

В базальтах аргиллизированные низкотемпературные пропилиты развиваются по миндалекаменным трещиноватым базальтам, которые имеют контакт с липаритами и продуктами их изменения. Миндалекаменные разности базальтов сильно изменены. Мезостазис в различной степени замещен гидрослюдой, хлоритом, равномерно размещены глинистые минералы или гидроокислы железа. Плагиоклазы в различной степени гидрослюдизированы и карбонатизированы. Темноцветные минералы преимущественно хлоритизированы, по трещинкам у них развивается красновато-коричневое вещество, похожее на иддингсит, иногда наблюдается замещение мелкозернистым или гранулированным кварцем, с которым практически всегда ассоциирует адуляр. При этом кварц образует радиально-лучистые агрегаты. Адуляр присутствует и в основной массе, образуя монокристаллы, ассоциируя с кварцем, и в последствии интенсивно замещается глинистым веществом. В породах присутствует пирит в количестве 5–7% площади шлифа.

Многочисленные везикулы и миндалины зонально сложены селадонитом, смектитами, цеолитами, хлоритом, кварцем (халцедоном) и кальцитом. Причем слоистые силикаты образуют каемки различной толщины на стенках миндалин, а кварц (халцедон) и кальцит заполняют оставшееся свободное пространство полости. Очень часто наблюдается укрупнение миндалин за счет их слияния и разрастания, в результате они приобретают сложные асимметричные формы с несколькими центрами кристаллизации. Размер отдельных миндалин может варьироваться от десятых долей миллиметра до 1,5 см.

Так, в полностью аргиллизированном базальте скв. № 344/5, глуб. 86,1 м. (рис. 1) стенки миндалины выполнены хлорит-смектитовым агрегатом, а ее центральная зона – смесью селадонита и цеолитов. Однако в шлифе отчетливо наблюдается, как миндалина рассекается трещинками (каналами), секущими первичную хлорит-селадонитовую минерализацию. Каналы заполнены цеолитами, имеющими низкий показатель преломления.


80 Научный отдел

Иногда в шлифах скв. № 50 (рис. 2) наблюдаются отдельные миндалины, выполненные по переферии хлорофеитом и хлорит-селадонитом,

которые в дальнейшем цеолитизируются и гидрослюдизируются.

В образце № 352/24, глуб. 143,5 м (рис. 3)

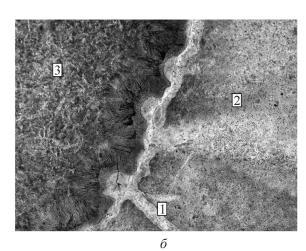
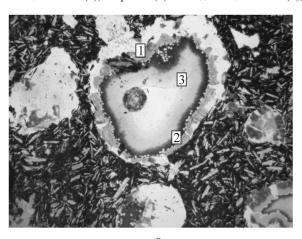



Рис. 1. Миндалина в полностью аргиллизованном базальте с каналами циркуляции гидротермальных растворов, выполненная цеолитами (I), хлоритом (2) и селадонитцеолитами (3); скв. № 344/5, глуб. 86,1 м.: a – ник. II, ув. 25; δ – ник. II, ув. 100

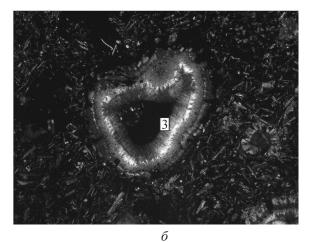
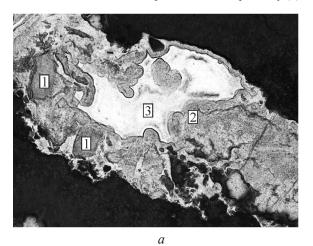
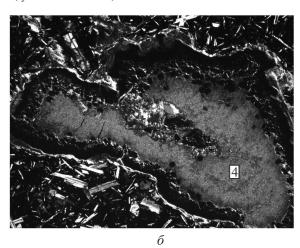
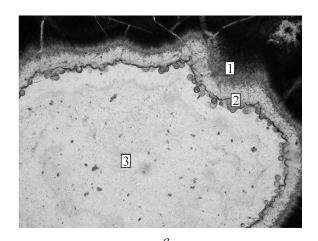



Рис.2. Миндалина в базальте, зонально выполненная хлоровеитом (1), цеолитами (2), хлорит-селадонитовый массой, переходящей в гидрослюду (3); скв.50, ув.100: a — ник. II; δ — ник.+




Рис.3. Базальт миндалекаменный: a – ник. II, ув. 200; центральная часть миндалины с реликтами хлорита (I), замещающегося почкообразнными цеолитами (I), центральный участок выполнен халцедоном (I); I0, селадонит (I1); скв.352/24, глуб. 143.5 м

Геология 81

миндалины имеют несколько удлиненную форму, их стенки частично выполнены тонкодисперсным хлоритом светло-зеленого цвета с низкой зеленовато-серой интерференционной окраской, переходящим в селадонит, заполняющий оставшееся пространство миндалины. Между хлоритом и селадонитом наблюдается более поздняя зона проработки, выполненная цеолитами с низким показателем преломления, внедряющееся в селадонит в виде округлых почкообразных сферолитовых выделений. Иногда в центральной части миндалин наблюдаются участки, выполненные этими же цеолитом и халцедоном. Контакты между цеолитом и халцедоном четкие. Причем халцедон по отношению к цеолитам, по видимому, является более поздней фазой, так как трещины и жилки, заполненные халцедоном, секут цеолиты, а также предыдущие зоны.

В этом же шлифе (рис. 4) наблюдается миндалина, по периферии выполненная реликтами хлорита, которая сменяется зоной почкообразных агрегатов цеолита, обладающего низкими показателями преломления с незначительными реликтами селадонита. Центральная часть миндалины выполнена более поздним халцедоном, который образует кайму, повторяющую форму почек цеолита. На участках непосредственного контакта халцедона с цеолитом последний хорошо раскристаллизован и образует радиально-лучистые и веерообразные агрегаты. Здесь также наблюдаются каналы, выполненые халцедоном, которые секут как реликты хлорита, так и цеолиты, иногда рассекая целые почки цеолитов.

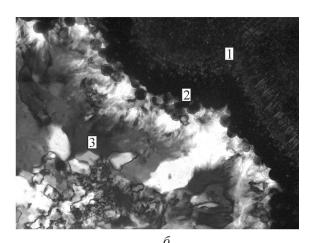
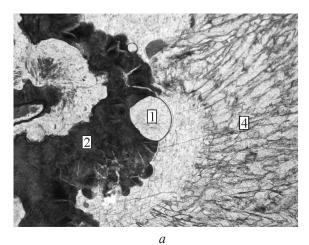


Рис. 4. Фрагмент миндалины в базальте с реликтами хлорита (I), замещающегося цеолитом (2) и халцедоном в центральной части (3); скв.352/24, глуб. 143.5 м; a – ник.II ув.100; δ – ник.+, ув.200


В образце скв. № 352/24а, глуб. 144,5 м (рис. 5, 6) всречена миндалина, выполненная сложными взаимно прорастающими комплексами минералов. Так, стенки миндалины выполнены тонкой полоской хлорита с зеленовато-серой интерференционной окраской (местами почти изотропный) с каймой раскристаллизованного и перешедшего в гидробиотит селадонита. В хлорите наблюдаются микроглазковые выделения цеолитов, постепенно переходящие в сплошную массу с микросферолитовой структурой. Между цеолитами и селадонитом наблюдается каемка матового непрозрачного вещества, не реагирующего на отраженный свет. Далее в миндалине наблюдается зона с извилистым контуром, представленная селадонитом с очень яркой изумрудно-зеленой окраской, почти не меняющейся при скрещенных николях. Он характеризуется оптическими константами ($N_p = 1,618, N_g = 1,642$; $N_g - N_p = 0.024$). Внутренняя часть миндалины заполнена кальцитом. В зоне контакта кальцита и селадонита наблюдается обширное развитие гидробиотита. Не вызывает сомнения наличие смешанослойных фаз, характеризующихся более темно-бурой окраской и появлением яркого цвета интерференции. Локально на этом контакте появляются очень крупные микросферолиты цеолитов с отчетливой серой интерференционной окраской и крестообразным угасанием. Кальцит, заполняющий центральное пространство, имеет форму монокристалла с трещинками спайности, а на периферии – сложную радиально ориентированную гребенчатую структуру.

Стадийность формирования минеральных фаз в миндалине выглядит, по-видимому, следующим образом. Первоначально образовался хлорит-селадонитовый комплекс, который по мере повторного проникновения гидротермального раствора замещался гидрослюдой, а в дальнейшем цеолитами. Очень хорошо видно, как отдельные сферолиты цеолитов обособлены от остальной минеральной части миндалины и секут контакты предыдущих минеральных фаз.

Как уже показывалось выше, в некоторых шлифах можно видеть трещинки (подводящие каналы), выполненные цеолитами, пересекаю-

82 Научный отдел

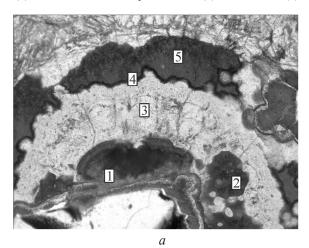



Рис. 5. Фрагмент крупной миндалины в базальте, выполненной сферолитовыми выделениями цеолитов (1) селадонитом (2), замещающегося гидробиотитом (3) и кальцитом (4); скв. 352/24a, глуб. 144.5 м; a – ник. II ув. 100; δ – ник. +, ув. 100

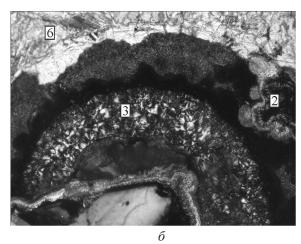


Рис. 6. Стенка газовой полости, выполнена хлорит-селодонитом (I), гидрослюда (2), цеолиты (3), каемка матового изотропного вещества?(4), селадонит (5), кальцит (6); скв.352/24а, глуб. 144.5 м; a – ник. II, ув.100; δ – ник.+, ув.100

щими слои, концентрически зонально сложенных на стенках миндалин смешанослойных силикатов (хлорит—селадонита). Формирование каёмок хлорит—селадонита, выстилающих стенки газовых полостей, указывает на раннюю стадию их образования по сравнению с более поздней минеральной ассоциацией цеолитов, упомянутой выше. Такое соотношение указывает на то, что заполнение миндалин и секущих их трещин вторичными минералами происходило в разное время.

Для изучения условий образовния гидротермалитов были определены палеотемпературы формирования минеральных ассоциаций [3] методом гомогенизации, в камере предложенной Н. П. Ермаковым. Гомогенизация газовожидких включений показала, что температура раствора, приводящего к образованию зоны аргиллизированных пропилитов, составляла 240–260 (кварц-цеолит (ломонтит?)) и 200–178°С (кварц-адуляр), а зоны аргиллизации – 160–145°С (кальцит-смектит), 100–90°С (кальцит-кристобалит). Наиболее информативными минералами для применения метода оказались кварц, кальцит,

в меньшей степени — кристаболит. В большинстве случаев включения в минералах образуют азонально расположенные скопления различной формы. Распределение включений в минералах даже на небольшом участке очень неравномерное: отдельные кристаллы насыщены ими, другие — практически не содержат включений.

Совместное нахождение в миндалинах базальтов, разных по составу и времени образования гидротермальных минералов и представляющих разные температурные зоны, позволяет предположить, что процесс протекал на фоне длительно существовавшей в зоне разрывов и трещин гидротермальной системы. Повторение или чередование слоистых силикатов разного цвета и разного состава, заполняющих подобные миндалины и трещины, а также характер взаимоотношения минеральных компонентов друг с другом рассматривается как свидетельство изменения состава и физико-химических характеристик минералообразующего раствора [4]. Важнейшими движущими факторами этого процесса, поддерживающего постоянное взаимодействие раствор-порода, являются образо-

Геология 83

вание зон растяжения, внедрения даек и периодически возобновляющаяся трещиноватость, которые характерны для зон рифтогенеза (тафрогенеза).

Библиографический список

- 1. Коробов Д. А. Нижнемезозойские гидротермалиты Кушмурунского грабена. Саратов, 1988. 166 с.
- 2. Мазина Е. А., Ксенофонтов О. К. К вопросу о характере нижнемезозойского магматизма Тургайского про-

УДК [551.438.5: 351.853.2] (470.44-25)

гиба // Геология Тургайского прогиба : сб. ст. / под ред. Н. К. Овечкина. Ленинград, 1961. Вып. 1. 227 с.

- 3. Гончаренко О. П., Шелепов Д. А. Особенности гидротермальной минерализации в тафрогенных областях на примере Кушмурунского грабена (по данным изучения включений) // Тр. Х Междунар. конф. по термобарогеохимии. 2001. С. 387–397.
- 4. Осадочные бассейны : методика изучения, строение и эволюция // Тр. ГИНРАН. Вып. 543 / под ред. Ю. Г. Леонова, Ю. А. Воложа. М., 2004. 526 с.

АНТРОПОГЕННАЯ ТРАНСФОРМАЦИЯ ГЕОЛОГИЧЕСКОЙ СРЕДЫ НА УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЯХ КАК ФАКТОР УНИЧТОЖЕНИЯ ПАМЯТНИКОВ ПРИРОДЫ (на примере «Карьера Заплатиновка»)

А. С. Шешнёв, А. В. Иванов1

Саратовский государственный университет E-mail: sheshnev@inbox.ru ¹Отделение геологии НИИ ЕН СГУ, Саратов E-mail: YashkovIA@mail.ru

В статье рассматривается состояние памятника природы «карьер Заплатиновка» на территории Саратова в условиях антропогенной нагрузки. Приводится характеристика разреза антропогенных отложений, выделены стадии трансформации рельефа на участке.

Ключевые слова: урбанизированные территории, памятники природы, антропогенные изменения рельефа, антропогенные отложения, территория Саратова.

Anthropogenous Transformation of the Geological Environment in Urbanized Areas as a Factor in the Destruction of Natural Monuments (for Example «Open-cast Zaplatinovka»)

A. S. Sheshnev, A. V. Ivanov

The condition of the natural monument «open-cast Zaplatinovka» in territory of Saratov in the condition of anthropogenous loading is considered in the article. The characteristic of a cut of anthropogenous deposits is resulted, stages of transformation of s relief on a site are allocated.

Key words: the urban areas, natural monuments, the anthropogenic changes of the landscape, the anthropogenic deposit, the city of Saratov.

Песчаный карьер «Заплатиновка» расположен в южной части территории Саратова, в 600 м северо-западнее средней школы № 38 (рис. 1) и приурочен к одному из субширотных отрогов Лысогорского массива. Карьер закладывался в непосредственной близости от здания школы и в последующем расширялся в западном направлении. Разработка ограничена линией электропередач

(одна из опор расположена чуть западнее стенки карьера), а также уровнем грунтовых вод.

После фактического прекращения эксплуатации карьера объект оказался наиболее известным местонахождением верхнемеловых позвоночных (акуловых и химеровых рыб) и беспозвоночных (губок, двустворчатых моллюсков, брахиопод, морских ежей). В настоящее время карьер паспортизован в качестве особо охраняемого геологического объекта стратиграфического и палеонтологического профиля площадью 1,33 га [1], на объекте запрещается захоронение бытовых и промышленных отходов, проведение раскопок с целью добычи фоссильного материала, строительство и прокладка коммуникаций, иные виды хозяйственной деятельности, не соответствующие целям особо охраняемой природной территории. Стихийное освоение площади уникального объекта может в ближайшем будущем повлечь за собой потерю его научной ценности. Еще в 1996 г. [2] отмечалась необходимость «успеть» изучить максимально подробно естественные обнажения в пределах городской черты, получив как можно больше информации до того, как они неизбежно, вследствие естественных причин и/или деятельности человека, потеряют свою научную ценность. Во второй половине 1990-х гг. коллективом специалистов НИИ геологии и геологического факультета Саратовского государственного университета проведено детальное комплексное изучение «классических» разрезов верхнемеловых отложений, что отражено в соответствующих публикациях [3 и др.].

Наиболее полный и непрерывный разрез сеноманских отложений изучен по южной стенке карьера, а верхние интервалы сеномана и разрез нижнего сантона — по западной стенке. Это определяется как юго-западным погружением