

ГЕОЛОГИЯ

УДК 552.13:552.3(470.32)

ОСОБЕННОСТИ МИНЕРАЛЬНОГО СОСТАВА СЕВЕРО-ЩИГРОВСКОГО И РОГОВСКОГО ДИОРИТ-ГРАНОДИОРИТОВЫХ МАССИВОВ КУРСКОГО БЛОКА (Центральная Россия)

Н. С. Кущева

Воронежский государственный университет E-mail: feodoritova@mail.ru

Северо-Щигровский и Роговский диорит-гранодиоритовые массивы Курского блока представляют собой интрузивные тела штокообразной формы. В составе пород интрузий изучены калиевые полевые шпаты, плагиоклазы, магнезиальная роговая обманка, флогопит, мусковит, кварц и эпидот.

Ключевые слова: Северо-Щигровский массив, Роговский массив, гранодиориты, минералогия.

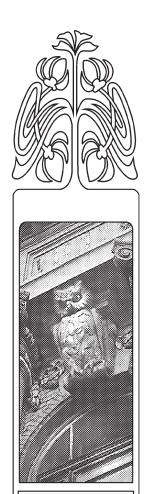
Features of Mineral Composition North Shchigry and Rogowski Diorite-granodiorite Arays of Kursk Block (Central Russia)

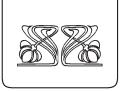
N. S. Kushcheva

North Shchigry and Rogowski diorite-granodiorite arrays are intrusive shtok bodies. As part of the intrusions of rocks studied potassium feldspar, plagioclase, hornblende magnesia, phlogopite, muscovite, quartz, and epidote.

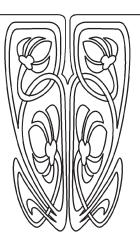
Key words: North Shchigry array, Rogowski array, granodiorite, mineralogy.

DOI: 10.18500/1819-7663-2017-17-1-27-38


Введение


Курский блок Воронежского кристаллического массива (ВКМ) характеризуется высокой насыщенностью интрузивными образованиями, сформировавшимися в различных геодинамических режимах. Исследуемые Северо-Щигровский и Роговский диорит-гранодиоритовые массивы располагаются в центральной части Курского блока ВКМ [1] в пределах Тим-Ястребовской синклинорной палеопротерозойской структуры и ее жесткого обрамления (рис. 1).

Геология и петрография


Диорит-гранодиоритовые интрузии представляют собой штокообразные тела площадью примерно 18 км² [2], прорывающие осадочнометаморфические образования архейского и палеопротерозойского возраста. Контакты с вмещающими породами резкие, четкие, интрузивные. Северо-Щигровский и Роговский массивы имеют зональное строение и сложены преимущественно массивными, плотными розовато-серыми гранодиоритами со среднезернистой структурой. В составе пород преобладают плагиоклазы, калиевые полевые шпаты, роговая обманка, биотит, мусковит, кварц.

Салические минералы составляют 60 об.% породы и представлены: плагиоклазами, призматического и таблитчатого габитуса, идиоморфных по отношению к другим минералам и калиевыми полевыми шпатами, образующими самостоятельные зерна изо-

НАУЧНЫЙ ОТДЕЛ

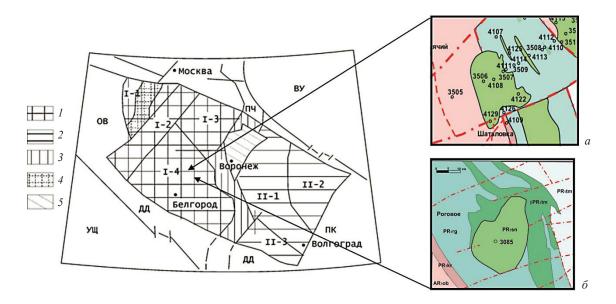


Рис. 1. Положение исследуемых массивов в структуре ВКМ: a — Северо-Щигровский; δ — Роговский: схема структурно-формационного районирования ВКМ: ВУ — Волго-Уральский сегмент; ПЧ — Пачелмский авлакоген; ПК — Прикаспийская впадина; J — Днепрово-Донецкий авлакоген; УЩ — Украинский щит; ОВ — Оршанская впадина; I — мегаблок КМА (макроблоки: I-1 — Красногорско-Рославльский, I-2 — Брянский, I-3 — Ливенско-Ефремовский, I-4 — Курско-Белгородский); J — Хоперский мегаблок (макроблоки: II-1 — Калач-Эртильский, II-2 — Камышинский, II-3 — Варваринский); J — Лосевская шовная зона; J — Волынско-Двинский вулкано-плутонический пояс; J — Ольховско-Шукавская грабенсинклинальная структура

метричной формы. Зерна кварца, также относящегося к салическим минералам, вероятно, имели крупные кристаллы, которые в результате катаклаза были раздроблены и превращены в мелкие зазубренные зерна с волнистым погасанием. Но часть зерен кварца сохранила свои первоначальные очертания, хотя и несет следы тектонических воздействий.

Сумма фемических минералов составляет 20–25 об.%. Среди них амфиболы, представленные вытянутыми кристаллами от призматической до игольчатой формы, и биотит (рис. 2, 3, δ , табл. 1), который образует зерна чешуйчатой формы или различные скопления.

Вторичные и акцессорные минералы представлены мусковитом (см. рис. 2, табл. 2), эпидотом (см. рис. 2, табл. 3), хлоритом, сфеном и апатитом.

Минералогия

Описание шлифов и количественно-минеральный подсчет производились на поляризационном микроскопе OLYMPUS BX-51 на кафедре минералогии, петрографии и геохимии ВГУ. Микрорентгеноспектральные локальные анализы породообразующих и акцессорных минералов проведены на рентгеноспектральном микрозондовом анализаторе JEOL 6380 LV с помощью энергодисперсионной приставки INCA 250 (ВГУ, г. Воронеж): ускоряющее напряжение 20 кВ, ток зонда 25нА (аналитик С. М. Пилюгин).

Проведенное исследование породообразующих и акцессорных минералов позволяет сделать следующие выводы.

Полевые шпаты Северо-Щигровского и Роговского диорит-гранодиоритовых массивов делятся на два типа: калиевые полевые шпаты и кальциево-натровые полевые шпаты (плагиоклазы). В исследуемых плагиоклазах выявлена химическая зональность, которая выражена в том, что зерна сложены основным ядром (An₃₆) и более кислыми внешними зонами (An₁₈₋₂₀) (рис. 4, табл. 4, 5, 6). Границы между центральными и периферическими частями плавные с прямым трендом изменения состава, т. е. от центра к краю происходит снижение содержания анортитового минала от An_{31} до An_{24} . Уменьшение происходит относительно медленно, без скачков. Основная часть плагиоклазов Северо-Щигровского и Роговского массивов представлена олигоклазом. В Северо-Щигровском массиве в породах присутствуют также андезин и альбит, что обусловлено проведением анализов из разных его зон и указывает на магматическую дифференциацию при кристаллизации. Калиевые полевые шпаты представлены микроклином ($Ab_6 Or_{93} An_1$) (см. рис. 4, табл. 4, 5, 6).

Амфиболы относятся к минеральному виду «магнезиальная роговая обманка» (рис. 2, 3, табл. 7). После анализа полученных результатов по роговым обманкам с помощью диаграмм [3, 4] (см. рис. 3) было установлено, что их кристаллизация происходила при температурах от 740 до

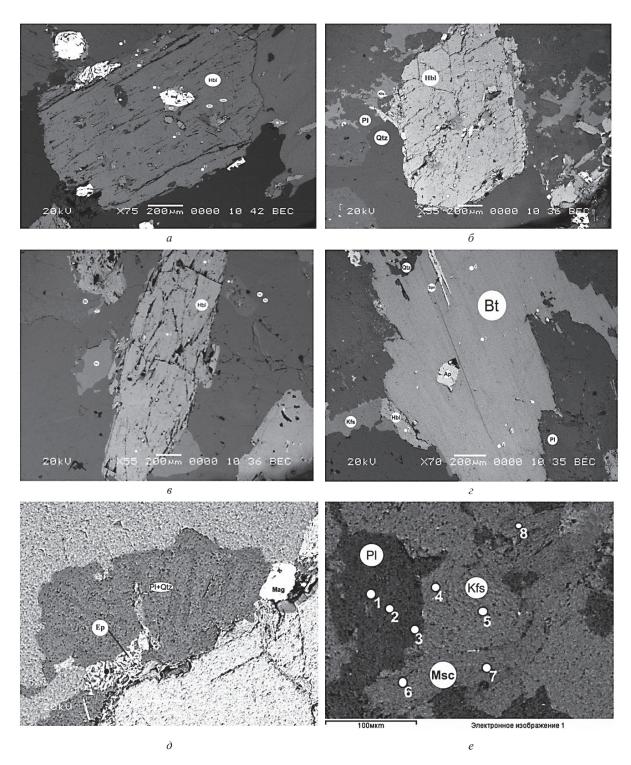


Рис. 2. Микрофотографии в отраженных электронах: a – роговая обманка (Hbl) (скв. 4129, глубина 280 м.); δ – роговая обманка (Hbl) (скв. 4129, глубина 339 м.); ϵ – роговая обманка (Hbl) (скв. 3085, глубина 219 м.); ϵ – биотит (Bt) (скв. 3507, глубина 387,5 м.); δ – эпидот (Ep) (скв. 4129, глубина 339 м.); ϵ – мусковит (Msc) (скв. 3507, глубина 387,5) [5]

Таблица $\it 1$ Результаты микрорентгеноспектральных анализов биотита

Формула	Севе	еро-Щигровский ма Скв. 3507, гл. 387,5	иссив М	Роговский массив Скв. 4129, гл. 280 м
- F - J	Bt-4	Bt-5	Bt-6	Bt-6
SiO ₂	36,03	37,3	38,34	35,6
TiO ₂	2,38	2,01	1,89	0,72
Al ₂ O ₃	13,97	15,23	14,76	15,1
FeO	18,09	18,75	18,27	16,84
MnO	0,27	0,34	0,33	0,3
MgO	12,27	12,6	12,42	16,25
CaO	0,00	0,00	0,00	0,00
Na ₂ O	0,31	0,29	0,00	0,00
K ₂ O	8,29	9,28	9,31	6,7
F	0,00	0,00	0,00	0,00
Cl	0,00	0,00	0,00	0,00
Сумма	91,61	95,80	95,32	91,51
Si	2,91	2,87	2,98	2,82
Ti	0,14	0,12	0,11	0,04
Al	1,33	1,38	1,35	1,41
al,4	1,09	1,13	1,02	1,18
al,6	0,24	0,26	0,33	0,23
Fe'''	0,00	0,00	0,00	0,00
Fe"	1,22	1,21	1,18	1,11
Mn	0,02	0,02	0,02	0,02
Mg	1,48	1,45	1,44	1,92
Ca	0,00	0,00	0,00	0,00
Na	0,05	0,04	0,00	0,00
K	0,85	0,91	0,92	0,68
F	0,00	0,00	0,00	0,00
ОН	2,00	2,00	2,00	2,00
X(Mg)	0,54	0,54	0,54	0,63
X(Al,4)	0,27	0,28	0,26	0,30
X(Al,6)	0,08	0,09	0,11	0,07
X_Si	0,73	0,72	0,74	0,70
X(4)Al	0,27	0,28	0,26	0,30
X(M1)Fe	0,46	0,46	0,46	0,37
X(M2)Fe	0,37	0,37	0,36	0,32
X(M2)A1	0,12	0,13	0,16	0,11
X(M2)Ti	0,07	0,06	0,06	0,02
X(Sdph+East)	35,98	36,94	48,34	32,54
X(Ann+Phl)	64,02	63,06	51,66	67,46
XSdph	16,41	16,97	22,06	12,09
XEast	19,57	19,98	26,28	20,45
XAnn	29,21	28,96	23,58	25,07
XPhl	34,82	34,10	28,08	42,39
AI III	34,02	34,10	20,00	42,39

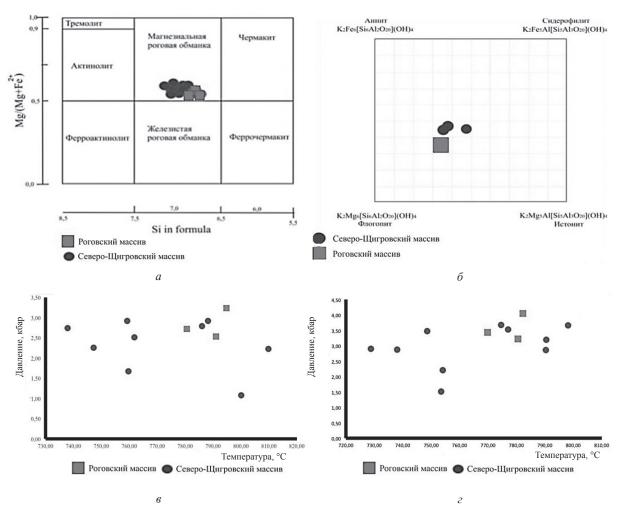


Рис. 3. Классификационные диаграммы: a – амфиболы; δ – биотиты; ϵ – определение давлений и температур кристаллизации роговых обманок [4]; ϵ – определение давлений и температур кристаллизации роговых обманок [3]

Таблица 2 Результаты микрорентгеноспектральных анализов мусковита

	Север	о-Щигровскі	ий массив
Формула	Ск	в. 4043, гл. 2	81,8 м
	Bt-6	Bt-7	Bt-8
SiO ₂	48,52	45,95	46,48
TiO ₂	0,00	0,39	0,58
Al ₂ O ₃	29,4	29,66	28,6
Cr ₂ O ₃	0,00	0,00	0,00
FeO	4,39	4,52	4,58
MnO	0,00	0,00	0,00
MgO	1,26	1,03	1,12
CaO	0,21	0,00	0,00
Na ₂ O	0,33	0,52	0,57
K ₂ O	10,49	10,18	10,1
Сумма	94,59	92,25	92,04

Таблица 3 Результаты микрорентгеноспектральных анализов эпидота

	Северо-Щигро	вский массив
Формула	Скв. 3507, гл. 387,5 м	Скв. 4129, гл. 339 м
	Bt-8	Bt-6
SiO ₂	37,89	43,37
TiO ₂	0,00	0,00
Al_2O_3	21,55	22,06
Cr ₂ O ₃	0,22	0,00
FeO	13,12	11,63
MnO	0,45	0,00
MgO	0,00	0,00
CaO	22,93	20,84
Na ₂ O	0,00	0,00
K ₂ O	0,00	0,14
Сумма	96,16	98,46

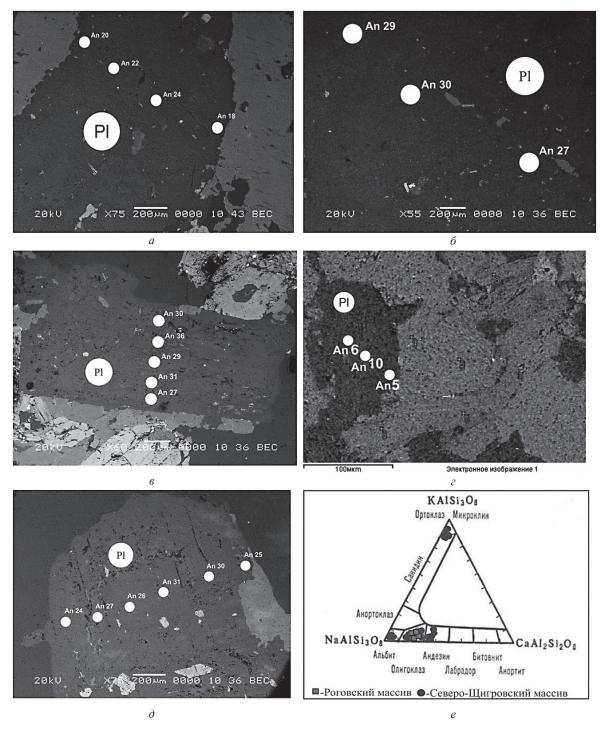


Рис. 4. Микрофотографии плагиоклазов (PI) в отраженных электронах с точками микрорентгеноспектральных анализов: a – скв. 4129, глубина 280 м; δ – скв. 4129, глубина 339 м; ϵ – скв. 3507, глубина 387,5 м; ϵ – скв. 4043, глубина 281,8 м; δ – скв. 3085, глубина 219 м; ϵ – классификационная диаграмма полевых шпатов из гранодиоритов [5]

Таблица 4

Результаты микрорентгеноспектральных анализов полевых шпатов Роговского и Северо-Щигровского массивов

		Pl-16	63,32	0,00	25,80	0,00	0,00	0,00	6,45	9,72	00,00	105,29		2,65	0,00	1,27	00,00	0,00	0,00	0,29	0,79	0,00		0,27	0,73	0,00
		Pl-15	62,87	00,00	25,86	0,00	0,00	0,00	7,36	8,85	0,21	105,15		2,65	0,00	1,28	00,00	0,00	0,00	0,33	0,72	0,01		0,31	9,08	0,01
		Pl-14	62,12	0,00	25,37	0,37	0,00	0,00	7,09	9,62	0,23	104,80		2,61	0,00	1,26	0,01	0,00	0,00	0,32	0,78	0,01		0,29	0,70	0,01
CUR		Pl-13	58,56	00,00	25,58	0,00	0,00	0,00	8,36	8,27	00,00	100,77		2,58	0,00	1,33	00,00	00,00	0,00	0,39	0,70	0,00		0,36	0,64	0,00
Севепо-Шигловский массив	гл. 387,5 м	Pl-12	60,28	00,00	25,14	0,00	0,00	0,00	6,80	8,66	0,19	101,07		2,64	0,00	1,30	00,00	00,00	0,00	0,32	0,73	0,01		0,30	69,0	0,01
oundli-ou	Скв. 3507, гл. 387,5	Pl-11	26,99	00,00	22,48	0,00	0,33	0,00	4,02	10,36	00,00	104,16		2,83	0,00	1,12	00,00	0,01	0,00	0,18	0,85	0,00		0,18	0,82	0,00
Севе		Pl-9	60,17	00,00	25,81	0,29	0,00	0,00	8,12	7,87	0,17	102,43	ице	2,62	0,00	1,32	0,01	00,00	0,00	0,38	99,0	0,01		0,36	0,63	0,01
		Kfs-3	80,69	00,00	19,29	0,00	0,21	0,00	0,24	13,00	00,00	101,82	Количество ионов в формульной единице	2,94	0,00	76,0	00,00	0,01	0,00	0,01	1,07	0,00	тав	0,01	66,0	0,00
		Kfs-2	66,79	00,00	18,81	0,00	0,00	0,00	0,00	0,67	15,02	102,49	в формул	3,07	0,00	1,00	00,00	0,00	0,00	0,00	90,0	0,87	Нормативный состав	00,00	90,0	0,94
		Kfs-1	65,53	00,00	18,92	0,00	0,00	0,00	0,00	76,0	14,89	100,31	тво ионов	3,01	0,00	1,03	0,00	0,00	0,00	0,00	60,0	0,87	Нормат	0,00	60,0	0,91
		Pl-9	62,06	00,00	23,46	0,00	0,00	0,00	5,57	9,11	0,39	100,59	Количес	2,73	0,00	1,21	0,00	0,00	0,00	0,26	0,78	0,02		0,25	0,73	0,02
		Pl-8	62,51	00,00	24,96	0,00	0,00	0,00	7,07	6,8	0,15	103,59		2,67	0,00	1,26	0,00	0,00	0,00	0,32	0,74	0,01		0,30	69,0	0,01
Роговский массив	гл. 219 м	Pl-7	60,34	00,00	23,87	0,00	0,00	0,00	6,7	8,24	0,24	99,39		2,70	0,00	1,26	0,00	0,00	0,00	0,32	0,71	0,01		0,31	0,68	0,01
Роговский массив	Скв. 3085, гл. 219	Pl-6	62,04	0,25	25,09	0,00	0,00	0,00	6,35	86,6	0,12	103,83		2,63	0,01	1,25	0,00	0,00	0,00	0,29	0,82	0,01		0,26	0,74	0,01
		PI-5	61,65	0,00	24,11	0,00	0,16	0,00	6,39	9,61	00,00	101,92		2,67	0,00	1,23	0,00	0,01	0,00	0,30	0,80	0,00		0,27	0,73	0,00
		PI-4	62,93	00,00	24,15	0,00	0,00	0,00	5,55	89,6	0,18	102,49		2,71	0,00	1,22	0,00	0,00	0,00	0,26	0,81	0,01		0,24	0,75	0,01
	Формула		SiO_2	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Сумма		Si	Ti	Al	Fe"	Mn	Mg	Ca	Na	K		X(Ca)	X(Na)	X(K)

Результаты микрорентгеноспектральных анализов полевых шпатов (скв. 4043)

	сток	Kfs-4	64,42	00,00	17,80	0,00	0,00	0,00	0,00	65,0	15,63	98,44		3,03	00,00	66'0	0,00	0,00	0,00	00,00	0,05	0,94		00,00	0,05	
	Скв. 4043, гл. 281,8 м, 2-й участок	Kfs-3	46,88	0,44	28,66	4,78	0,00	0,97	00,00	0,32	10,35	92,40		2,34	0,02	1,68	0,20	0,00	0,07	0,00	0,03	99,0		0,00	0,04	
	Скв. 4043, гл. 2	PI-2	64,46	00,00	20,68	00,00	00,00	00,00	2,90	11,17	0,18	99,39		2,83	00,00	1,07	00,00	00,00	00,00	0,14	0,95	0,01		0,12	0,87	
ссив)	Pl-1	68,01	0,00	21,79	0,00	0,00	0,00	2,38	12,34	0,00	104,52	v	2,83	0,00	1,07	0,00	0,00	0,00	0,11	66'0	0,00		0,10	06,0	
Северо-Щигровский массив		Kfs-5	64,83	0,00	17,68	0,00	0,00	0,00	0,18	0,53	15,37	98,59	Количество ионов в формульной единице	3,04	0,00	86'0	0,00	0,00	0,00	0,01	0,05	0,92	й состав	0,01	0,05	
Север	і участок	Kfs-4	68,89	00,00	18,21	0,19	0,00	0,00	0,00	06,30	15,59	99,18	ество ионов в фо	3,03	00,00	1,00	0,01	00,00	00,00	00,00	0,03	0,93	Нормативный состав	0,00	0,03	
	Скв. 4043, гл. 281,8 м, 1-й участок	PI-3	69,43	00,00	20,27	0,00	0,00	0,00	1,12	12,37	0,00	103,19	Колич	2,93	0,00	1,01	0,00	0,00	0,00	0,05	1,01	0,00		0,05	0,95	
	CKB. 4042	Pl-2	68,46	00,00	21,08	0,00	0,00	0,00	2,52	12,65	00,00	104,71		2,84	0,00	1,03	0,00	0,00	0,00	0,11	1,02	0,00		0,10	06,0	
		Pl-1	71,37	00,00	21,42	0,00	0,00	0,00	1,65	13,70	0,15	108,29		2,85	0,00	1,01	0,00	0,00	0,00	0,07	1,06	0,01		90,0	0,93	
	Формула		SiO_2	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Сумма		Si	Ti	Al	Fe"	Mn	Mg	Са	Na	K		X(Ca)	X(Na)	

Таблица 6

Результаты микрорентгеноспектральных анализов полевых шпатов (скв. 4129)

	1	Pl-9	62,64	0,00	24,39	0,00	0,00	0,00	6,27	9,21	0,00	102,51		2,70	0,00	1,24	0,00	0,00	0,00	0,29	0,77	0,00		0,27	0,73	0,00
	Скв. 4129, гл. 339 м	PI-8	61,13	00,00	25,55	0,00	0,25	0,00	6,77	8,57	0,21	102,48		2,64	0,00	1,30	0,00	0,01	0,00	0,31	0,72	0,01		0,30	69,0	0,01
	Cr	PI-7	63,52	00,00	25,56	0,00	0,00	0,00	7,12	9,46	0,24	105,90		2,65	0,00	1,26	0,00	0,00	0,00	0,32	0,76	0,01		0,29	0,70	0,01
ассив		PI-8	67,17	00,00	23,12	0,00	0,00	0,00	3,86	10,95	0,16	105,26	юй единице	2,80	0,00	1,14	0,00	0,00	0,00	0,17	0,88	0,01	ый состав	0,16	0,83	0,01
Северо-Щигровский массив		Kfs-5	62,24	0,00	16,51	0,00	0,00	0,00	0,27	0,56	14,24	93,82	Количество ионов в формульной единице	3,07	0,00	96'0	0,00	0,00	0,00	0,01	0,05	06,0	Нормативный состав	0,01	0,06	0,93
Север	гл. 280 м	Pl-4	62,80	0,00	23,19	0,00	0,00	0,00	4,22	10,89	00,00	101,10	Количество в	2,71	0,00	1,18	0,00	0,00	0,00	0,20	0,91	0,00		0,18	0,82	0,00
	Скв. 4129, гл. 280 м	PI-3	63,00	0,00	23,41	0,00	0,00	0,00	5,66	6,67	00,00	101,74		2,73	0,00	1,20	0,00	0,00	0,00	0,26	0,81	0,00		0,24	0,76	0,00
		PI-2	65,31	0,30	24,79	0,00	0,00	0,00	5,63	10,71	0,12	106,86		2,68	0,01	1,20	0,00	0,00	0,00	0,25	0,85	0,01		0,22	0,77	0,01
		Pl-1	63,45	00,00	23,50	0,00	0,00	0,00	4,79	10,21	0,00	101,95		2,73	0,00	1,19	0,00	0,00	0,00	0,22	0,85	0,00		0,21	0,79	0,00
	Формула		SiO_2	${ m TiO_2}$	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	Сумма		Si	Ti	Al	Fe"	Mn	Mg	Ca	Na	K		X(Ca)	X(Na)	X(K)

Результаты микрорентгеноспектральных анализов роговой обманки

	Por	Роговский массив	CMR				Cereno-1	Севено-ПТигновский массив	й массив				
Формула	CKB	Скв. 3085, гл. 219	19 м	Скв. 3507, гл. 387м		Скв. 4129,	5			Скв.	Скв. 4129, гл. 33	339 м	
	-	2	3	7	7	6	10	11	-	2	3	4	5
SiO_2	46,44	46,06	45,75	45,58	47,72	48,91	47,09	45,63	45,89	45,74	44,52	48,07	48,74
TiO2	0,87	1,11	66'0	1,07	1,39	1,29	1,67	0,58	69'0	1,70	1,27	1,21	1,28
Al_2O_3	8,3	8,44	9,20	8,16	7,12	6,43	8,01	8,80	8,55	69'8	8,08	7,91	8,04
$\mathrm{Cr_2O_3}$	0,00	0,00	0,00	0,00	0,00	0,00	00,00	00,00	0,00	0,00	0,00	0,00	0,20
FeO	15,87	14,92	17,36	17,81	15,81	14,81	15,80	17,37	16,15	14,38	13,30	13,91	15,59
MnO	0,35	0,27	0,40	0,42	0,28	0,70	0,54	0,50	0,58	0,67	0,29	0,29	0,00
MgO	12,83	12,65	11,32	11,54	12,76	13,98	13,16	12,10	12,13	12,35	12,04	12,93	12,63
CaO	11,88	11,70	12,23	11,85	11,90	11,85	12,48	12,09	10,49	10,27	10,34	10,88	11,81
Na_2O	1,79	2,05	2,22	1,55	1,30	1,23	1,55	1,76	1,79	1,78	1,65	1,21	1,18
K_20	0,85	1,10	1,05	1,07	0,77	69,0	76,0	0,88	0,74	1,12	0,73	0,80	0,97
Cl	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
F	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sum	99,18	98,30	100,52	50,66	50,66	68,66	101,27	99,71	97,01	96,70	92,22	97,21	100,44
				Количес	тво ионов	Количество ионов в формульной единице	юй единиц	e					
Si	6,74	6,78	89'9	6,70	6,92	6,97	6,72	6,64	6,74	6,74	6,87	6,69	6,95
Ti	0,09	0,12	0,11	0,12	0,15	0,14	0,18	90,0	0,08	0,19	0,15	0,13	0,14
Al	1,42	1,46	1,58	1,41	1,22	1,08	1,35	1,51	1,48	1,51	1,47	1,36	1,35
Cr	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02
Fe",	0,55	0,26	0,19	0,57	0,43	0,62	0,42	0,67	0,94	89,0	0,45	0,53	0,34
Fe''	1,38	1,57	1,93	1,61	1,49	1,14	1,46	1,44	1,04	1,09	1,26	1,16	1,51
Mn	0,04	0,03	0,05	0,05	0,03	0,08	0,07	90,0	0,07	80,0	0,04	0,04	0,00
Mg	2,77	2,77	2,46	2,53	2,76	2,97	2,80	2,62	2,65	2,71	2,77	2,80	2,68
Ca	1,85	1,84	1,91	1,87	1,85	1,81	1,91	1,88	1,65	1,62	1,71	1,69	1,80
Na	0,50	0,58	0,63	0,44	0,37	0,34	0,43	0,50	0,51	0,51	0,49	0,34	0,33
K	0,16	0,21	0,20	0,20	0,14	0,13	0,18	0,16	0,14	0,21	0,14	0,15	0,18

Окончание табл. 7

	Poi	Роговский массив	СИВ				Cesepo-1	Северо-Щигровский массив	й массив				
Формула	CKB	Скв. 3085, гл. 219 м	19 м	Скв. 3507, гл. 387м		Скв. 4129, гл. 280 м	, гл. 280 м			CKB.	Скв. 4129, гл. 339 м	39 м	
	1	2	3	7	7	6	10	11		2	3	4	5
Ц	0,00	0,00	0,00	00,00	0,00	0,00	00,00	00,00	00,00	00,00	00,00	0,00	0,00
CI	0,00	0,00	0,00	00,00	00,00	00,00	00,00	00,00	00,00	00,00	00,00	00,00	0,00
НО	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00
					Нормати	Нормативный состав	1B						
Si in Formula	6,74	6,78	89'9	6,70	6,92	6,97	6,72	6,64	6,74	6,74	6,87	66'9	6,95
Mg/Mg+Fe ₂ +	0,67	0,64	0,56	0,61	59,0	0,72	99'0	9,65	0,72	0,71	69'0	0,71	0,64
Ti	60,0	0,12	0,11	0,12	0,15	0,14	0,18	90,0	0,08	0,19	0,15	0,13	0,14
Ca b	0,00	0,00	0,00	0,00	00,0	00,00	00,0	0,00	00,00	00,00	00,00	00,0	0,00
Ca+ Na b	0,04	0,03	0,05	0,05	60,03	80,0	20,0	90,0	0,07	80,0	0,04	0,04	0,00
(Na+K) a	0,11	0,12	0,04	80,0	0,12	0,11	0,03	90,0	0,28	0,30	0,25	0,27	0,20
Na b	0,04	0,03	0,05	0,05	60,03	80,0	20,0	90,0	0,07	80,0	0,04	0,04	0,00
)	Определение давлений и температур кристаллизации роговых обманок	і и темпера	тур кристал	тлизации рс	эговых обм	анок				
кбар [3]	3,22	3,44	4,04	3,19	2,20	1,51	2,86	3,67	3,52	3,67	3,47	2,90	2,88
кбар [4]	2,54	2,72	3,24	2,51	1,67	1,08	2,23	2,91	2,79	2,92	2,75	2,26	2,24
T°, C	780,57	769,78	782,27	790,50	754,02	753,43	790,38	798,12	776,98	774,55	748,53	728,75	737,98
T°, C [4]	791,01	780,63	794,74	96,008	761,82	759,66	800,03	809,83	788,11	786,02	759.23	737,93	747.20

810 °С и давлении от 1 до 4 кбар, что соответствует глубинам от 3 до 9 км. В Северо-Щигровском массиве роговые обманки представлены как высокотемпературными, так и менее температурными разностями, а породы Роговского массива сложены только более высокотемпературными, однако при оптическом исследовании образцы не отличаются.

Биотит относится к минеральному виду флогопит (см. рис. 2, 4, *г*, табл. 1), который представлен кристаллами призматической формы.

Мусковит был исследован только в Северо-Щигровском массиве и сложен отдельными кристаллами чешуйчатой формы (см. рис. 2, табл. 2).

Эпидот в породах мало распространен и представлен ксеноморфными кристаллами (см. рис. 2, табл. 3).

Выводы

Исследование минерального состава Северо-Щигровского и Роговского диорит-гранодиоритовых массивов показывает, что они сложены преимущественно полевыми шпатами, которые, в свою очередь, делятся на два типа: калиевые полевые шпаты и кальциево-натровые полевые шпаты (плагиоклазы). Последние характеризуются прямой химической зональностью, выраженной в плавном изменении Ап минала от центральных частей зерен к периферии, амфибо-

лами минерального вида «магнезиальная роговая обманка», кристаллизация которых происходила при температурах от 740 до 810°С и давлении от 1 до 4 кбар, что соответствует глубинам от 3 до 9 км, биотитом, который в исследуемых интрузиях представлен флогопитом, мусковитом, кварцем и эпидотом.

Библиографический список

- 1. Чернышов Н. М., Ненахов В. М., Лебедев И. П., Стрик Ю. Н. Модель геодинамического развития Воронежского кристаллического массива в раннем докембрии // Геотектоника. 1997. № 3. С. 21–30.
- 2. Савко К. А., Базиков Н. С., Козлова Е. Н. Палеопротерозойские гранитоиды Тим-Ястребовской структуры Воронежского кристаллического массива: геохимия, геохронология и источники расплавов // Вестн. ВГУ. Сер. Геология. 2014. № 2. С. 56–78.
- 3. Rutter M. J., Wylie P. J. Experimental Calibration of Hornblende as a Proposed Empirical Geobarometer // J. Eos American Geophysical Union (United States). 1988. № 2. P 86–87
- 4. *Johnson M. C., Rutherford M. J.* Experimental calibration of an Aluminium-in-Hornblende geobarometer applicable to calc-alkaline rocks // J. Eos American Geophysical Union (United States). 1988. № 3. P. 69–87.
- 5. Whitney D. L., Evans B. W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. Vol. 95. P. 185–187.

Образец для цитирования:

Кущева Н. С. Особенности минерального состава северо-щигровского и роговского диорит-гранодиоритовых массивов Курского блока (Центральная Россия) // Изв. Сарат. ун-та. Нов. сер. Сер. Науки о Земле. 2017. Т. 17, вып. 1. С. 27–38. DOI: 10.18500/1819-7663-2017-17-1-27-38.

Cite this article as:

Kushcheva N. S. Features of Mineral Composition North Shchigry and Rogowski Diorite-Granodiorite Arays of Kursk Block (Central Russia). *Izv. Saratov Univ. (N. S.), Ser. Earth Sciences*, 2017, vol. 17, iss. 1, pp. 27–38 (in Russian). DOI: 10.18500/1819-7663-2017-17-1-27-38.